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• predicate logic

Propositional logic cannot adequately express the meaning of all

statements in mathematics and in natural language. For example, 

No rules of propositional logic allow us to conclude the truth of the statement

• “Every computer connected to the university network is 

functioning properly.” 

In this section we will introduce a more powerful type of logic called 

predicate logic

will see how predicate logic can be used to express the meaning of a 

wide range of statements in mathematics and computer science in ways that 

permit us to reason and explore relationships between objects. 

Statements involving variables, such as

• “x > 3,”   “x = y + 3,”   “x + y = z,”
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We can denote the statement “x is greater than 3” by P (x), where P denotes the 

predicate “is greater than 3” and x is the variable.

• “x > 3,” 

The statement P (x) is also said to be the value of the propositional function P 

at x. Once a value has been assigned to the variable x, the statement P (x)

becomes a proposition and has a truth value. 

Let P (x) denote the statement “x > 3.” What are the truth values of P 

(4) and P (2)?

Example

Solution

P (4) by setting x = 4 in the statement “x > 3.” Hence, P (4) is true

P (2) by setting x = 2 in the statement “x > 3.” Hence, P (2) is false

We can also have propositional functions that involve more than 

one variable.
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Let Q(x, y) denote the statement “x = y + 3.” What are the truth 

values of the propositions Q(1, 2) and Q(3, 0)? 

Example

Q(1, 2), set x = 1 and y = 2 in the statement Q(x, y). Hence, Q(1, 2) is the 

statement “1 = 2 + 3,” which is false. 

Solution

Q(3, 0) is the proposition “3 = 0 + 3,” which is true. 

Let R(x, y, z) denote the statement “x + y = z .” What are the truth 

values of the propositions R(1, 2, 3) and R(0, 0, 1) ?

Example

Solution
The proposition R(1, 2, 3) is obtained by setting x = 1, y = 2, and z = 3 

in the statement R(x, y, z). We see that R(1, 2, 3) is the statement 

“1 + 2 = 3,” which is true. 

R(0, 0, 1), which is the statement “0 + 0 = 1,” is false.
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A statement of the form P (x1, x2, . . . , xn) is the value of the propositional 

function P at the n-tuple (x1, x2, . . . , xn), and P is also called an n-place 

predicate or a n-ary predicate.

Quantifiers

Quantification expresses the extent to which a predicate is true over a 

range of elements

We need quantifiers to express the meaning of English words including 

all and some

The notation ∀xP (x) denotes the universal quantification of P (x). Here ∀
is called the universal quantifier. We read ∀xP (x) as “for all xP (x)” or “for 

every x P (x).” An element for which P (x) is false is called a counterexample

of ∀xP (x)

The universal quantifier



Lecture 2

Dr. Mohamed Abdel-Aal
Discrete Mathematics 

Let P (x) be the statement “x + 1 > x.” What is the truth value of the 

quantification ∀xP (x), where the domain consists of all real numbers?

Example

∀xP (x) is true. 

Let P (x) be the statement “x > 0.” What is the truth value of the 

quantification ∀xP (x), 

Example

• where the domain consists of all integers numbers?

∀xP (x) is false. 

• where the domain consists of all positive integers numbers?

∀xP (x) is true. 

Let P (x) be the statement “x is even.” What is the truth value of the 

quantification ∀xP (x), where the domain consists of all real numbers?

Example

∀xP (x) is false. 
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What is the truth value of ∀xP (x), where P (x) is the statement “𝑥2 < 10” 

and the domain consists of the positive integers not exceeding 4?

The statement ∀xP (x) is the same as the conjunction

P (1) ∧ P (2) ∧ P (3) ∧ P (4),

because the domain consists of the integers 1, 2, 3, and 4. Because P (4), 

which is the statement “42 < 10,” is false, it follows that ∀xP (x) is false. 

Solution

What does the statement ∀xN(x) mean if N(x) is “Computer x is connected 

to the network” and the domain consists of all computers on campus?

Solution

The statement ∀xN(x) means that for every computer x on campus, 

that computer x is connected to the network. This statement can be 

expressed in English as 

“Every computer on campus is connected to the network.”
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Example

• is true, because there are no integers x with 0 < x < 1. 

Solution

The Existential quantifier 

What is the truth value of if the domain consists of all real 

numbers? What is the truth value of this statement if the domain consists of 

all integers?

• where the domain consists of all real numbers, is false. For 

example,                  . 

We use the notation ∃xP (x) for the existential quantification of P (x). 

Here ∃ is called the existential quantifier

∃xP (x) is read as

“There is an x such that P (x),”

“There is at least one x such that P (x),”

or

“For some xP (x).” 
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Let P (x) be the statement “x > 3.” What is the truth value of the 

quantification ∃xP (x), where the domain consists of all real numbers?

Example

∃xP (x), is true. 

• Observe that the statement ∃xP (x) is false if and only if there is no 

element x in the domain for which P (x) is true. 

Let P (x) be the statement “x > 0.” What is the truth value of the 

quantification ∃xP (x) 

Example

• where the domain consists of all integers numbers?

∃xP (x) is true. 

• where the domain consists of all negative integers numbers?

∀xP (x) is false. 
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the uniqueness quantifier, denoted by ∃! or ∃1.The notation ∃! xP (x) 

[or ∃1xP (x)] states “There exists a unique x such that P (x) is true.”

The uniqueness quantifier

“there is exactly one” and “there is one and only one.”) For instance, 

∃!x(x − 1 = 0), where the domain is the set of real numbers, 
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Quantifiers with Restricted Domains

What do the statements ∀x < 0 (𝑥2 > 0), ∀y = 0 (𝑦3 = 0), and ∃z > 0 (𝑧2 = 2) 

mean, where the domain in each case consists of the real numbers?

Example

The statement ∀x < 0 (𝑥2> 0) is the same as  ∀x (x < 0 → 𝑥2 > 0). 

The statement ∀y = 0 (𝑦3 = 0), this statement is equivalent to ∀y(y = 0 → 𝑦3 = 0) 

the statement ∃z > 0 (𝑧2 = 2), this statement is equivalent to ∃z(z > 0 ∧ 𝑧2 = 2). 

Solution

Precedence of Quantifiers

The quantifiers ∀ and ∃ have higher precedence than all logical operators 

from propositional calculus. 

For example, 

∀xP (x) ∨ Q(x) is the disjunction of ∀xP (x) and Q(x). In other words, it 

means (∀xP (x)) ∨ Q(x) rather than ∀x(P (x) ∨ Q(x)).
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• Logical Equivalences Involving Quantifiers

Statements involving predicates and quantifiers are logically equivalent if and 

only if they have the same truth value no matter which predicates are substituted into 

these statements and which domain of discourse is used for the variables in these 

propositional functions. S ≡ T

Show that ∀x(P (x) ∧ Q(x)) and ∀xP (x) ∧ ∀xQ(x) are logically equivalent

we must show that they always take the same truth value, no matter 

what the predicates P and Q are, and no matter which domain of discourse 

is used. 

Suppose we have particular predicates P and Q, with a common domain.

• First, we show that if ∀x(P (x) ∧ Q(x)) is true, then ∀xP (x) ∧ ∀xQ(x) is true.

• Second, we show that if ∀xP (x) ∧ ∀xQ(x) is true, then ∀x(P (x) ∧ Q(x)) is true.
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Next, suppose that ∀xP (x) ∧ ∀xQ(x) is true. It follows that ∀xP (x) is true 

and ∀xQ(x) is true. Hence, if a is in the domain, then P (a) is true and Q(a) is 

true . It follows that for all a, P (a) ∧ Q(a) is true. It follows that ∀x(P (x) ∧
Q(x)) is true. We can now conclude that: 

So, suppose that ∀x(P (x) ∧ Q(x)) is true. This means that if a is in the domain, then

P (a) ∧ Q(a) is true. Hence, P (a) is true and Q(a) is true. Because P (a) is true and 

Q(a) is true for every element in the domain, we can conclude that ∀xP (x) and 

∀xQ(x) are both true. This means that ∀xP (x) ∧ ∀xQ(x) is true.

∀x(P (x) ∧ Q(x)) ≡ ∀xP (x) ∧ ∀xQ(x).
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Negating Quantified Expressions

“Every student in your class has taken a course in calculus.”

This statement is a universal quantification, namely ∀xP (x)

where P (x) is the statement “x has taken a course in calculus” and the domain 

consists of the students in your class

The negation of this statement is 

“It is not the case that every student in your class has taken a course in calculus.” 

This is equivalent to 

“There is a student in your class who has not taken a course in calculus.”

∃x ¬P (x).

This example illustrates the following logical equivalence:

¬∀x P (x) ≡ ∃x ¬P (x)
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“

There is a student in this class who has taken a course in calculus.” 

This is the existential quantification ∃x Q(x) ,

The negation of this statement is the proposition 

“It is not the case that there is a student in this class who has taken 

a course in calculus.” 

This is equivalent to 

“Every student in this class has not taken calculus,” ∀x ¬Q(x). 

¬ ∃x Q(x) ≡ ∀x ¬Q(x). 
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The negation of ∃x (𝑥2 = 2) is the statement  ¬∃x (𝑥2 = 2), which 

is equivalent to ∀x ¬ (𝑥2= 2). This can be rewritten as ∀x(𝑥2 ≠ 2). 

What are the negations of the statements ∀x (𝑥2 > x) and ∃x(𝑥2 = 2)?

Solution

The negation of ∀x(𝑥2 > x) is the statement ¬∀x(𝑥2 > x), which is 

equivalent to ∃x¬(𝑥2 > x). This can be rewritten as ∃x(𝑥2 ≤ x). 

Show that ¬∀x(P (x) → Q(x)) and ∃x(P (x) ∧ ¬Q(x)) are logically equivalent. 

¬∀x (P (x) → Q(x)) ≡ ∃x (¬(P (x) → Q(x)))       (De Morgan’s law for universal quantifiers )  

≡ ∃x (P (x) ∧ ¬Q(x) )      (By the fifth logical equivalence in Table 7 )
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We introduce M(x), which is the statement “x has visited Mexico.” and 

Translating from English into Logical Expressions

Express the statements “Some student in this class has visited Mexico”

and “Every student in this class has visited either Canada or Mexico” 

using predicates and quantifiers.

Solution

S(x) to represent “x is a student in this class.”

the domain for the variable x consists of all people. 

• Our solution becomes ∃x (S(x) ∧ M(x))

Let C(x), which is the statement “x has visited Canada .” 

∀x(S(x) → (C(x) ∨ M(x)))
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• We will see how to use nested quantifiers to express mathematical 

statements such as 

“The sum of two positive integers is always positive.” 

• We will show how nested quantifiers can be used to translate 

English sentences such as 

“Everyone has exactly one best friend” 

Into logical statements. 



Lecture 2

Dr. Mohamed Abdel-Aal
Discrete Mathematics 

∀x ∃y (x + y = 0)

Example: “Every real number has an inverse” is   

where the domains of x and y are the real numbers.

We can also think of nested propositional functions:

∀x ∃y (x + y = 0) can be viewed as ∀ x Q(x) where Q(x) is, ∃y

P(x, y) where P(x, y) is (x + y = 0). 

Assume that the domain for the variables x and y consists of all real 

numbers. The statement

• ∀x ∀y (x + y = y + x)

says that x + y = y + x for all real numbers x and y.

Understanding Statements Involving Nested Quantifiers

we need to unravel what the quantifiers and predicates that appear mean. 
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• ∀x ∃y (x + y = 0)

says that for every real number x there is a real number y such that x + y = 0.

this states that every real number has an additive inverse

Translate into English the statement 

∀x ∀y ((x > 0) ∧ (y < 0) → (xy < 0)), 

where the domain for both variables consists of all real numbers.

Solution
this statement says that for real numbers x and y, if x is positive

and y is negative, then xy is negative. 

The Order of Quantifiers

It is important to note that the order of the quantifiers is important,

unless all the quantifiers are universal quantifiers or all are existential 

quantifiers.



Lecture 2

Dr. Mohamed Abdel-Aal
Discrete Mathematics 

∀x ∀y P (x, y) and ∀y ∀x P (x, y) have the same meaning, and both are true 

Let P (x, y) be the statement “x + y = y + x.” What are the truth values of the 

quantifications ∀x ∀y P (x, y) and ∀y∀xP (x, y) where the domain for all 

variables consists of all real numbers?

Let Q(x, y) denote “x + y = 0.” What are the truth values of the 

quantifications ∃y ∀x Q(x, y) and ∀x ∃y Q(x, y), where the domain for 

all variables consists of all real numbers?

∃y ∀x Q(x, y)

denotes the proposition:

“There is a real number y such that for every real number x, Q(x, y).”

Solution

Because

there is no real number y such that x + y = 0 for all real numbers x, the 

statement ∃y ∀x Q(x, y) is false
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The quantification

∀x ∃y Q(x, y)

denotes the proposition

“For every real number x there is a real number y such that Q(x, y).”

Given a real number x, there is a real number y such that x + y = 0; namely, 

y = −x. Hence, the statement ∀x∃yQ(x, y) is true
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Define P(x,y) : x ∙ y = 0, where the domain for all variables consists of all 

real numbers. What is the truth value of the following:

∀x∀y P(x,y) False      

∀x ∃y P(x,y) True     

∃ x ∀ y P(x,y) True      

∃ x ∃ y P(x,y) True  

Quiz (1)

Define P(x,y) : x / y = 1, where the domain for all variables consists of all 

real numbers. What is the truth value of the following:

∀x∀y P(x,y) ………..……

∀x ∃y P(x,y) ……….…….     

∃ x ∀ y P(x,y) ……………..     

∃ x ∃ y P(x,y) …………….  
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we can express this statement as

∀x ∀y ((x > 0) ∧ (y > 0) → (x + y > 0))

Translating Mathematical Statements into Statements Involving Nested 

Quantifiers

Translate the statement “The sum of two positive integers is always 

positive” into a logical expression

where the domain for both variables consists of all integers. 

Note that we could also translate this using the positive integers as 

the domain.  We can express this as

∀x ∀y (x + y > 0).

Translate the statement “Every real number except zero 

has a multiplicative inverse.”

This can be rewritten as

∀x ((x ≠ 0) → ∃y (xy = 1)).
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Thinking of Nested Quantification

Nested Loops

 To see if ∀x ∀y p(x,y) is true, loop through the values of x :

• At each step, loop through the values for y. 

• If for some pair of x and y, P(x,y) is false, then ∀x ∀y p (x,y) is false and both 

the outer and inner loop terminate.

• ∀x ∀y p (x,y) is true if the outer loop ends after stepping through each x

 To see if ∀x ∃y P(x,y) is true, loop through the values of x:

• At each step, loop through the values for y.

• The inner loop ends when a pair x and y is found such that P(x, y) is true.

• If no y is found such that P(x, y) is true the outer loop terminates as ∀x ∃y P(x,y) 

has been shown to be false. 

• ∀x ∃y P(x,y) is true if the outer loop ends after stepping through each x. 

If the domains of the variables are infinite, then this process can not actually 

be carried out.
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Negating Nested Quantifiers

Express the negation of the statement ∀x ∃y (xy = 1)

Solution

applying De Morgan’s laws for quantifiers, we can move the negation in 

¬∀x∃y(xy = 1) inside all the quantifiers. We find that 

¬∀x ∃y (xy = 1) ≡ ∃x ¬∃y (xy = 1), 

≡ ∃x ∀y ¬(xy = 1).

≡ ∃x ∀y (xy ≠ 1).

we conclude that our negated

statement can be expressed as ∃ ∃x ∀y (xy ≠ 1).
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Valid Arguments 

• Rules of Inference

• We will show how to construct valid arguments in two stages; 

• first for propositional logic and then for predicate logic. The rules 

of inference are the essential building block in the construction of 

valid arguments. 

 Propositional Logic

• Inference Rules

 Predicate Logic

• Inference rules for propositional logic plus additional 

inference rules to handle variables and quantifiers.

By an argument, we mean a sequence of statements that end with a conclusion. By valid, 

we mean that the conclusion, or final statement of the argument, must follow from the 

truth of the preceding statements, or premises, of the argument
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Valid Arguments in Propositional Logic

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We know that when p and q are propositional variables, the 

statement ((p → q) ∧ p) → q is a tautology. In particular, when both 

p → q and p are true, we know that q must also be true. We say this 

form of argument is valid because whenever all its premises (all 

statements in the argument other than the final one, the conclusion) 

are true, the conclusion must also be true. 
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An argument in propositional logic is a sequence of propositions. All 

but the final proposition in the argument are called premises and the 

final proposition is called the conclusion. An argument is valid if the 

truth of all its premises implies that the conclusion is true. 

The argument is valid if the premises imply the conclusion

From the definition of a valid argument form we see that the argument 

form with premises (p1, p2, . . . , pn) and conclusion q is valid, when (p1 

∧ p2 ∧ · · · ∧ pn) → q is a tautology
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Example:

Let p be “It is snowing.”

Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete math.”

“It is snowing.”

“Therefore , I will  study discrete math.”

Corresponding Tautology:
(p ∧ (p →q)) → q

Rules of Inference for Propositional Logic: Modus Ponens
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Modus Tollens

Example:

Let p be “it is snowing.”

Let q be “I will study discrete math.”

“If it is snowing,  then I will study discrete math.”

“I will not study discrete math.”

“Therefore , it is not snowing.”

Corresponding Tautology:

(¬q∧(p →q))→¬p
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Hypothetical Syllogism

Example:

Let p be “it snows.”

Let q be “I will study discrete math.”

Let r be “I will get an A.”

“If it snows,  then I will study discrete math.”

“If I study discrete math, I will get an A.”

“Therefore , If it snows, I will get an A.”

Corresponding Tautology:

((p →q) ∧ (q→r))→(p→ r)
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Disjunctive Syllogism

Example:

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math or I will study English literature.”

“I will not study discrete math.”

“Therefore , I will study English literature.”

Corresponding Tautology:

(¬p∧(p ∨q))→q
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Addition

Example:

Let p be “I will study discrete math.”

Let q be “I will visit Las Vegas.”

“I will study discrete math.”

“Therefore, I will  study discrete math or I will visit 

Las Vegas.”

Corresponding Tautology:

p →(p ∨q)
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Simplification

Example:

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math and English literature”

“Therefore, I will study discrete math.”

Corresponding Tautology: 

(p∧q) →p
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Conjunction

Example:

Let p be “I will study discrete math.”

Let q be “I will study English literature.”

“I will study discrete math.”

“I will study  English literature.”

“Therefore, I will study discrete math and I will study 

English literature.”

Corresponding Tautology:

((p) ∧ (q)) →(p ∧ q)
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Resolution

Example:

Let p be “I will study discrete math.”

Let r be “I will study English literature.”

Let q be “I will study databases.”

“I will not study discrete math or I will study English 

literature.”

“I will study  discrete math or I will study databases.”

“Therefore, I will study databases or I will study English 

literature.”

Corresponding Tautology:

((¬p ∨ r ) ∧ (p ∨ q)) →(q ∨ r)
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Using the Rules of Inference to Build Valid Arguments

 A  valid argument is a sequence of statements. Each statement is either a 
premise or follows from previous statements by  rules of inference. The 
last statement is called conclusion.

 A valid argument takes the following form:

S1

S2

.

.

.

Sn

C 
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From the single proposition 

Show that q is a conclusion.

Solution:

Valid Arguments
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Show that the premises

With these hypotheses:

“It is not sunny this afternoon and it is colder than yesterday.”

“We will go swimming only if it is sunny.”

“If we do not go swimming, then we will take a canoe trip.”

“If we take a canoe trip, then we will be home by sunset.”

Using the inference rules, construct a valid argument for the conclusion:

“We will be home by sunset.”

Solution 1. Choose propositional variables:

p : “It is sunny this afternoon.”      r : “We will go swimming.”  

t : “We will be home by sunset.” q : “It is colder than yesterday.”     

s  : “We will take a canoe trip.” 

2. Translation into propositional logic:
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3.  Construct the Valid Argument 
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Valid arguments for quantified statements are a sequence 

of statements. Each statement is either a premise or follows 

from previous statements by  rules of inference which 

include:

Rules of Inference for Propositional Logic

Rules of Inference for Quantified Statements
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Rules of Inference for Quantified Statements
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Example 1: Using the rules of inference, construct a valid 
argument to show that

“John Smith has two legs”

is a consequence of the premises:

“Every man has two legs.” “John Smith is a man.”

Solution: Let M(x) denote  “x is a man” and L(x) “ x has two 
legs” and let John Smith be a member of the domain. 

Valid Argument:
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Example 2: 

Use the rules of inference to construct a valid argument showing that the 
conclusion

“Someone who passed the first exam has not read the book.”

follows from the premises

“A student in this class has not read the book.”

“Everyone in this class passed the first exam.”

Solution: 

Let C(x) denote  “x is in this class,” B(x) denote  “ x has  read the book,” and 
P(x) denote   “x passed the first exam.”

First we translate the

premises and conclusion 

into symbolic form. 
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Valid Argument:


